1 2 3 4 5	Supporting Information for "Isomer Specific Accumulation of PerfluorooctaneSulfonamide Ethanol-based Phosphate Diester to PerfluorooctaneSulfonate in Japanese Medaka(<i>Oryziaslatipes</i>)"				
6	Hui PENG, Shiyi Zhang, Jianxian SUN, Zhong ZHANG, John P. Giesy, and Jianying HU*				
7	MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences,				
8	Peking University, Beijing100871, China				
9 10 11 12 13 14	Words 406				
15	This supporting information provides tables and figures addressing (1)Multiple reaction				
16	monitoring (MRM) transitions of diSPAP and its metabolites; (2) Recoveries (n=3) and				
17	method detection limits (MDLs, ng/g wet weight (ww)) of perfluorinated compounds in fish				
18	samples; (3) Typical ¹⁹ F spectra of purfied diSPAP; (4) Typical chromatogram (a) and spectra				
19	(b) of purified diSPAP standard using UPLC-Q-TOF;(5) Typical chromatograms of isomers of				
20	EtFOSAA, PFOA, EtFOSA and PFOS using BEH fluoro-phenyl column; (6) Typical				
21	chromatograms of EtFOSE and B-FOSAA using BEH C18 column; (7) Typical				
22	UPLC-MS/MS chromatogram of diSPAP in culture water sample; (8) Typical chromatograms				
23 24	of EtFOSA in standard and exposed fish samples.				

25	Purification of diSPAP by HPLC fractionation. HPLC fractionation was used to isolate
26	diSPAP from technical product FC-807 which was obtained from Hubei Hengxin Company.
27	Fractions were collected at 2-min interval from 65 min to 95 min, and then diSPAP in each
28	fraction was quantified by use of UPLC-MS/MS after 10,000-fold dilution with methanol.
29	Fractions which contained diSPAP were collected and combined, and then evaporated.
30	Fractionation was conducted by use of a Waters HR C18 column (6 μ m; 19 mm×300 mm)
31	which was maintained at 40°C. The flow rate and the injection volume were 6 mL/min and
32	100 μ L, respectively. Methanol(A) and ultrapure water (B) were used as mobile phases: 20%
33	A was increased to 50% in 10 min, and then to100% in 100 minand kept for 5 min, followed
34	by a decrease to initial conditions of 20% and held for 20 min to allow for equilibration. After
35	purification, the diSPAP was characterized by NMR spectra (Figure S1). The purified diSPAP
36	(5 mg/L) was also characterized using UPLC-Q-TOF with full scan range from m/z 100-2000.
37	A single peak of diSPAP was clearly observed, and the intensities of other peaks were more
38	than 50-folds lower than diSPAP (Figure S2). Finally, the potential impurities
39	(perfluorooctanesulfonate (PFOS), perfluorooctane sulfonamide ethanols (FOSE),
40	perfluorooctane sulfonamide ethanol (FOSE) based phosphate monoester (monoSPAP),
41	perfluorooctane sulfonamide ethanol (FOSE) based phosphate triester (triSPAP), NEtFOSE,
42	NMeFOSE, perfluorooctane sulfonamide (PFOSA), NEtFOSA, NMeFOSA,
43	2-(perfluorooctanesulfonamido) acetic acid (FOSAA), NEtFOSAA, and NMeFOSAA) were
44	quantified using targeted monitoring potential contaminants, and none of these chemicals
45	were detected in purified diSPAP (10 mg/L).

46 UPLC-Q-TOF Analysis. UPLC-Q-TOF was used to characterize the purification of

47	diSPAP. Separation of purified diSPAP was achieved with a Waters ACUITY UPLC BEH
48	C18column (1.7 $\mu m;$ 2.1 mm \times 100 mm). Injection volume was 5 $\mu l.$ Methanol (A) and 5 mM
49	ammonium acetate (B) were used as the mobile phases. Initially 10% A was increased to
50	100% in 8 min and kept for 2 min, followed by a decrease to initial conditions of 10% A and
51	held for 2 min to allow for equilibration. The flow rate was 0.2 mL/min. Mass spectrometry
52	was performed using a Waters XEVO G2QToperated with an electrospray ionization sourcein
53	a negative ion mode. Sodium formate was used for a mass calibration check with the mass
54	range of m/z 100-2000, and leucine-enkephalin (MW=555.62 Da) was used as a lock mass.
55	The instrument was set to acquire over the m/z range 100-2000 with scan time of 0.5 s, and
56	data were collected in centroid mode.

58 SUPPORTING INFORMATIONTABLES1.Multiple Reaction Monitoring (MRM)

59 Transitions of diSPAP and Its Metabolites.

60

Compound	Acronym	Parent	Daughter	Cone	Collision
		Ion	Ion	Voltage	Energy
perfluorooctanesulfonamide		1203.5	169	70	68
ethanol (FOSE)based phosphate	diSPAP		526		48
diester					
2-(perfluorooctanesulfonamido)		556	498	45	24
acetic acid	FOSAA		83		38
2-(N-methylperfluorooctanesulf		570	419	36	22
onamide) acetic acid	NMeFOSAA		83		28
2-(N-ethylperfluorooctanesulfon		584	419	32	22
amido) aceticacid	NEtFOSAA		83		22
perfluorooctane sulfonamide		498	78	42	34
*	PFOSA		99		30
2-N-methylperfluorooctane		512	169	46	24
sulfonamide	NMeFOSA		219		22
2-N-ethylperfluorooctane		526	169	42	30
sulfonamide	NEtFOSA		219		30
perfluorooctanesulfonamide		602	59	35	30
ethanol	FOSE				
2-N-methyl		616	59	35	30
perfluorooctanesulfonamide					
ethanol	NMeFOSE				
2-N-ethyl		630	59	35	30
perfluorooctanesulfonamide					
ethanol	NEtFOSE				

61

63 SUPPORTING INFORMATION TALBE S2. Recoveries (n=3) and Method Detection

64 Limits (MDLs, ng/g wet weight (ww)) of Perfluorinated Compounds in Fish Samples.

65

	Recoveries (%)	MDLs (ng/g ww)
diSPAP	97±4.9%	29
PFOS	87±4.0%	2.0
PFOSA	88±11%	3.9
NMeFOSA	82±13%	2.6
NEtFOSA	91±2.7%	0.9
FOSAA	102±12%	0.4
NMeFOSAA	91±7.7%	1.5
NEtFOSAA	89±11%	2.6
FOSE	95±6.5%	19
NMeFOSE	89±13%	6.3
NEtFOSE	89±9.4%	5.6
¹³ C ₄ -PFOS	92±5%	-
d ₅ -NEtFOSA	85±7%	-
d5-NEtFOSAA	98±4%	-

66

FIGURE S1. Typical ¹⁹F spectra of purified diSPAP.
71

FIGURE S2. Typical chromatogram (a) and spectra (b) of purified diSPAP standard usingUPLC-Q-TOF.

EtFOSE were not detected) and FOSAA in exposed fish sample using BEH C18 column.

91 FIGURE S6. Typical UPLC-MS/MS chromatograms of EtFOSA in standard and exposed

- 92 fish samples.
- 93